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Abstract 

The work accumulated in this article presents the results of learning the faults that affect the CEB network. The objective 
is to predict failures in order to prevent these faults from creating interruptions. The network operating data from 2008 
to 2015 are used as materials. The algorithms: SVM, KNN, Random Forest, Gradient Boosting, ANN and Logistic 
Regression were used as methods to create the models. The results are subjected to evaluation criteria namely: the 
confusion matrix, the area under the ROC curve and the scores (Accuracy, F1 Score, Precision and recall). A 
characterization of the faults is carried out. The results of the characterization reveal that there are 19 faults and the 
most recurrent is the short circuit, which appeared 947 times out of 2427 during the study period. The modeling results 
are perfect. The True Positives of the confusion matrices are greater than 450 out of 497, for the classes. Some are better 
than others. The unfavorable is obtained through the KNN with AUC=0.761. Its score, (Accuracy=0.955; F1 Score = 
0.957; Precision=0.958; Recall=0.955), confirms this observation. The AUC=0.664, remains even more unfavorable with 
the SVM modeling but its score, (Accuracy=0.989; F1 Score = 0.988; Precision=0.988; Recall=0.989), exceeds that of 
KNN. Moreover, for the other models, their AUC exceeds 80% with the more perfect logistic regression giving: 
AUC=0.991; Accuracy=0.991; F1 Score = 0.991; Precision=0.991; Recall=0.991. These results confirm that, even very 
random and of various causes, we can predict the defects in the CEB network. However, it is necessary to use more 
recent data in order to apply these results in future operations.  

Keywords: ANN; Defects; Gradient boosting; KNN; Logistic regression; Modeling; Power network; Random forest; 
SVM 

1. Introduction

Human habits in today's world lead us to understand that after the industrial revolution, we are in the digital revolution. 
We find ourselves in a world where almost everything is going digital except the transport of users and goods; 
agriculture is no less. In this context, we can distinguish the circulation of money, communications, conferences and 
even the vast majority of acts of violence that are no longer carried out by human contact but by devices. Among the 
devices that allow most of the aforementioned operations to be carried out, we can list: mobile phones, computers, 
servers, drones, remote controls, etc. Whether these devices are fixed or mobile, the heart of their operation is 
electricity. Several primary energy sources are used to produce this electrical energy [1, 2]. These are fossil sources 
(natural gas, coal, oil), polluting nature by their release of greenhouse gases [3, 4, 5]. Technology has evolved so much 
since the 2022s that we are turning our eyes towards small modular nuclear reactors which have very interesting yields. 
That being said, international policies are currently encouraging production based on renewable and clean sources (sun, 
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wind, geothermal) [6, 7]. The transformation of these sources into electricity is done in power plants, namely: 
hydroelectric, thermal flame or nuclear, geothermal, wind, solar photovoltaic [8, 9, 10]. 

However, these power plants are not close to places of mass consumption. We thus find the need to install the networks 
for the transport and distribution of electrical energy [11, 12]. Despite the consideration of several protection devices 
allowing the sustainability of the supply of electrical energy, we always come across some faults in places in the 
networks. This sometimes causes short or long interruptions. In order to remedy these problems, we aim through this 
work to use modern methods to predict failures. The literature shows that several works using different methods 
(modeling, optimization and statistical characterization), have taken into account the prediction and resolution of faults 
in the networks, [13, 14, 15, 16]. They have repeatedly used artificial intelligence. In artificial intelligence, there is 
supervised learning, unsupervised learning, [17], and deep learning [18]. These types of learning make it possible to 
predict random situations from the observations made. 

For this work, we choose supervised learning. It includes several algorithms among which we can list: SVM, K-Nearest 
Neighbors, Random Forest, Gradient Boosting, Artificial Neural Network, Logistic Regression. They will allow us to learn 
the failures noted in the CEB transmission network. The objective is to predict failures in order to prevent faults from 
creating interruptions in the supply of electricity. To achieve this, we will use operating data related to the recording 
and recurrence of faults in the network of the Benin Electric Community (CEB). This is a company responsible for 
transporting electrical energy to cover Togo and Benin; which are countries in humid and coastal West Africa. In Togo, 
energy distribution is the responsibility of the Togo Electric Power Company (CEET) and the Beninese Electric Power 
Company (SBEE) is responsible for that of Benin [19, 20, 21]. The aim of this work is to learn the frequency of failures 
in these networks and to submit the test results, obtained with the algorithms used, to some performance evaluation 
metrics in order to judge the effectiveness of the models. Among the metrics, we retain: the confusion matrix, the ROC 
curve and the scores (Accuracy, F1 Score, Precision and recall). The results will make it possible to anticipate through 
preventive maintenance, the defects in order to maintain the sustainability of the electricity supply in the CEB network.  

2. Material and methods 

The CEB networks are made by overhead and underground lines in places. We only focus on the overhead lines in this 
work. It starts in Ghana and ends in Benin, passing particularly through the Nangbéto hydroelectric power plant, with 
a capacity of 75 MW which also makes it possible to manage peak hours (hours at which peaks in power consumption 
are high). For its management, there is a dispatching that controls all departures and arrivals. Interruptions commonly 
occur for two reasons. In the first case, the inability to meet demand due to insufficient production or in the event of 
aberrant demand. The second case comes when an unexpected failure occurs on the network. In this case, the causes 
are often technical failures, human errors, climatic conditions. It is the triggering of protection devices that often signals 
interruptions in the supply of electrical energy to customers. In this case, the operators report hierarchically who decide 
to move on to restoration or do maintenance before resumption. Following this, weekly recordings are made as an 
operating report, [22]. In this work, we exploit these data collected from 2008 to 2015 on the network of which Figure 
1 shows the beginning and Figure 2 the end of the Excel recording sheet. 



World Journal of Advanced Research and Reviews, 2024, 24(03), 2099-2115 

2101 

 

Figure 1 Start of the CEB operating data collection pages 

 

 

Figure 2 End of CEB operating data collection pages 

We explored the data by reorganizing the faults by categories. Table 1 shows the types of faults and the causes that 
generated them. Also included in this table are the date, the location of the fault, the line on which the fault occurred, 
the number of trips, the power at interruption, the undistributed energy and the duration of interruption. 
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Table 1 Rearrangement of CEB operating data for characterization 

Date 
Name 
of 
Lines 

Number of 
Sites 

Trigger 
number 

Power 
interrupted 
(MW) 

Lost Energy 
Estimate 
(MWh) 

Duration 
(mn) 

Causes of 
failure 

Type of 
defects 

2010-
09-13 

CVE L20-CGB 1 2 32 1,07 Overcurrent 
Fault in the 
SBEE network 

2013-
03-26 

MOM L410-NAN 1 4 7,17 0,48 Short circuit 
Voltage 
variation 

2009-
07-01 

AVA Dep. OUIDAH 1 5 2,5 0,21 Short circuit 
Fault in the 
SBEE network 

2012-
08-16 

SAK T3 1 4 0,1 0,01 Short circuit 
Disruption in 
the TCN 
network 

2013-
11-23 

ONI L3 6 26 0,75 0,33 Short circuit 
Fault in the 
CEET network 

2009-
01-08 

BOH T1 1 18 2,5 0,75 Short circuit 
Ground fault 
at Kara power 
plant 

2013-
03-19 

DAP L34,5 1 1 0,5 0,01 Short circuit 
Sudden 
change in 
voltage 

2008-
07-30 

ATA L420-NAN 1 5 8,58 0,72 Overcurrent 
Low oil level 

2014-
10-22 

KARA T1 2 8 6,5 0,87 Short circuit 
Unknown 

2013-
07-25 

LOK Arrivée-L32 1 2 6,5 0,22 Overcurrent 
Earth fault in 
Bawku 

2008-
11-25 

MOM L32-LOK 1 3 5,52 0,28 Overcurrent 
Overload 

2008-
08-04 

NAN L410 1 60 4,25 4,25 
Frequency 
fluctuation 

Overload 

2009-
06-19 

SAK ATR2 1 0 36 4,25 Overcurrent 
Fault in the 
SBEE network 

2014-
07-21 

SAK LA10 1 60 72,96 4,25 Overcurrent 
Ground fault 
at Kara power 
plant 

2008-
09-21 

AVA Dép.OUIDAH 2 42 3 72,96 Short circuit 
Fault in the 
SBEE network 

2011-
01-31 

DAP L34,5 7 479 0,6 2,1 Short circuit 
Overload 

2014-
07-09 

CVE L20 1 4 36 4,79 Short circuit 
Fault in the 
SBEE network 

2008-
08-10 

LOK Arrivée-L32 1 5 8,5 2,4 Overcurrent 
Unknown 

2010-
04-27 

KARA T1 1 4 2 0,71 Overcurrent 
Earth fault in 
Bawku 

2012-
05-14 

SAK TR3 4 24 0,1 0,13 Short circuit 
Fault in the 
CEET network 

2010-
04-27 

DAP L34,5 7 42 3 0,04 Short circuit 
Unknown 
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2010-
09-13 

CVE L20 1 479 0,6 4,25 Overcurrent 
Sudden 
change in 
voltage 

To achieve this work, we first reorganized the failures based on the causes and we identified a total of 18. Then we used 
the linear kernel of Support Vector Machine, 100 iterations of logistic regression, 42 random states with 5 n_neighbors, 
42 random states for random forest, 42 random states of gradient boosting and the ReLu activation function of artificial 
neural networks. Figure 3 presents the synopsis of the method and the organization of the steps. The models are 
subjected to training with 80% of the data and the remaining 20% were used to perform the tests following the Pareto 
law [23]. 

 

Figure 3 Synopsis and organization of the steps of the method 

2.1. Support Vector Machine [24, 25] 

Previous studies have employed machine learning for similar purposes. The approaches used included neural networks 
random forest and SVMs. SVMs were introduced by Vapnik and Chervonenkis (1981) and are widely used due to their 
flexibility in analyzing data with different distributions and their ability to deal with high-dimensional data such as gene 
expression. Previously SVMs using SNPs as predictors were employed for the classification of populations. In our 
implementation, we have chosen a linear kernel because it is suitable when the data are linearly separable. Indeed, it is 
sufficient to take a hyperplane that separates the classes, then to classify the data according to the side of the hyperplane 
where they are found. More formally, let a hyperplane separate the data. Then, it is sufficient to use the following 
function represented by the relation (1); sometimes called the indicator function; to perform the classification: 

( . ) ( . )Classe w x b Signe w x b+ = +   ………………(1) 

Where  
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2.2. Logistic regression [26, 27] 

Logistic regression is a supervised classification model used to predict the probability that a sample belongs to a given 
class. It is particularly suited to binary classification problems, although it can be extended to multi-class cases via 
techniques such as multinomial logistic regression. In this work, logistic regression has been applied to predict failures 
in the high-voltage overhead transmission network. One of the main objectives of supervised learning is to provide a 
classification system that, for any new individual from the population, provides a prediction with accuracy if possible. 
Logistic regression can do this. But, unlike other methods, it can also provide an indicator of the reliability of the 
prediction with an estimate of the probability. Thus, when is close to 1 or 0, the prediction is rather safe; when it takes 
an intermediate value, close to the assignment threshold s (usually s = 0.5), the prediction is less safe. In areas where 
the consequences of misallocations can be dramatic, one could even imagine a system that only classifies with certainty 
by respecting the following conditions: 

• if 1s 
 then y = −  

• if 2s 
 then y = +  

• else indeterminacy 

2.3. K-Neirest_Neighbors [28, 29, 30, 31] 

The K-Nearest Neighbors (KNN) model is a supervised learning method used for classification or regression tasks. The 
KNN algorithm works on the principle of proximity (see Figure 4). It classifies a new data sample according to the classes 
of the k closest data points in the training set. It has the advantage of simplicity, flexibility and does not make any 
assumptions about the data distribution. On the other hand, it has limitations such as: high computational cost; intensive 
memory; sensitivity to dimensions and sensitivity to noisy data. 

 

Figure 4 K-Nearest Neighbors Operational Flowchart 

2.4. Random forest, [32, 33] 

The Random Forest Classifier model is an ensemble-based machine learning algorithm that uses multiple decision trees 
to improve prediction accuracy and reduce the risk of overfitting. First, the model is initialized with a random_state 
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parameter. This ensures reproducibility of the results. The model is then trained on the training set. A random forest 
consists of aggregating the prediction of several trees. The idea behind this technique is to group the mean (in the case 
of regression) of the predictions in order to reduce the variance associated with it. The principle consists of aggregating 
the prediction of several different regression trees [17]. Figure 5 shows how its algorithm works. 

 

Figure 5 Flowchart of Random Forest operation 

2.5. Gradient Boosting, [34, 35, 36, 37, 38] 

The Gradient Boosting Classifier model is an ensemble method that builds decision trees iteratively. Each new tree 
corrects the errors of the previous trees. This improves the overall performance of the model. To optimize the 
performance of the model, a grid search is performed. This allows exploring different combinations of hyper 
parameters. The hyper parameters tested include: 

• n_estimators: Number of trees in the model (tested values: 50, 100); 
• max_depth: Maximum depth of trees (tested values: 3, 5); 
• min_samples_split: Minimum number of samples needed to split a node (tested values: 5, 10); 
• min_samples_leaf: Minimum number of samples needed to be a leaf (tested values: 2, 5); 
• learning_rate: Learning rate to control the contribution of each tree (tested values: 0.01, 0.1); 
• subsample: Proportion of samples to use for training (tested value: 0.8). 

2.6. ReLu Function of Artificial Neural Networks, [39, 40, 41] 

Artificial neural networks are highly connected networks of elementary processors operating in parallel (neurons), each 
artificial neuron is an elementary processor, it receives a variable number of inputs from upstream neurons, each of 
these inputs is associated with a weight W representing the connection strength, each elementary processor calculates 
a single output based on the information it receives, which then branches out to feed a variable number of downstream 
neurons. Each connection is associated with a weight. It is possible to improve the efficiency of the processing by 
inserting between the processing layers a layer that will operate a mathematical function (activation function) on the 
output signals. The ReLU (Rectified Linear Unit) function is formulated by the relation (2). 

( ) max(0, )Y x x=  ……………. (2) 

This function forces neurons to return positive values. Artificial Neural Network (ANN) is a machine learning model 
inspired by the functioning of the human brain. In this work, we designed a neural network model to predict faults in 
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the high-voltage overhead transmission network. The model is built according to a sequential architecture and consists 
of the following elements: an Input Layer, 99 Hidden Layers and an Output Layer. 

2.7. Performance evaluation criteria [42] 

In the context of the binary classification problem, there are four possible cases that occur: a true positive prediction 
(TP), a true negative prediction (TN), a false positive prediction (FP), and a false negative prediction (FN). Based on the 
number of times these four cases occur, that make up the confusion matrix, many different performance measures have 
been proposed. Amongst these measures there are accuracy (ACC), precision (PPV), recall (TPR), false negative rate 
(FNR), false positive rate (FPR), specificity (TNR), prevalence (PT) and F1 score (F1); their definitions are listed in Table 
2. 

Table 2 Summary of metrics and their determination formula 

Metrics  Definitions  Determination formulas 

ACC Accuracy 
TP TN

ACC
TP TN FP FN

+
=

+ + +

 

PPV Precision 
TP

PPV
TP FP

=
+

 

TPR Recall 
TP

TPR
TP FN

=
+

 

FNR False negative rate 
FP

FPR
FP TN

=
+

 

FPR False positive rate 
FP

FPR
FP TN

=
+

 

TNR Specificity 
TN

TNR
TN FP

=
+

 

F1  F1 Score 
2

1
2

TP
F

TP FP FN
=

+ +
 

 

For a binary classification, the confusion matrix has the theoretical form observed in Figure 6. The confusion matrix is 
a tool that measures the performance of a classification model with two or more classes, which allows the observed 
values to be compared with those of the prediction and is used to verify the correct classification of the data. 

 

Figure 6 Graphical view of the confusion matrix sections 
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The accuracy measure gives the user an overall view of the model's performance, all classes combined. This involves 
establishing the proportion of correctly classified examples, all classes combined, among all instances. The precision 
measure, on the other hand, makes it possible to evaluate to what extent the model is correct in its predictions, 
regardless of the class. Concretely, this measure gives the proportion of correctly classified examples, all classes 
combined. The recall, on the other hand, corresponds to the proportion of positive examples correctly predicted by the 
model. The higher it is, i.e. close to 1, the more the model is able to classify the positives. In addition, we will also plot 
the ROC curve to refine the results. This is a tool for evaluating and comparing models. The area under the curve (AUC) 
is a parameterized function of sensitivity and specificity as a function of the threshold varying between 0 and 1. The 
ROC curve is therefore plotted using two variables: a binary variable and a continuous one, [43]. The ROC curve has 
many advantages among which we can list the following: 

• it is independent of cost and misallocation matrices and allows to know if one model will always be better than 
the other; whatever the cost matrix;  

• it is operational even in the case of very unbalanced distributions;  
• its results remain valid even if the test sample is not representative  

3. Results  

Following the classification, 19 causes of failures were noted. Among these, short circuit takes the lead with 39.019% 
or 947 occurrences out of 2427 during the study period. It is followed by overcurrent which amounts to 889 
corresponding to 36.629%. On the other hand, loss of excitation, voltage drop and burning of the disconnector blade 
remain very rare (0.123% corresponding to 3 occurrences for 2427 encountered during the study period). The results 
of the classification are cumulated in Table 3. 

Table 3 Classification of causes of failures by number of occurrences 

Cause of breakdowns Number of appearances Frequency (%) 

Short circuit 947 39,0193655 

Overcurrent 889 36,6295838 

Differential 123 5,06798517 

None 97 3,99670375 

Homopolar 95 3,91429749 

Network collapse 92 3,79068809 

Overload 83 3,41985991 

Central trigger 22 0,90646889 

Loss of voltage 20 0,82406263 

Overvoltage and undervoltage 13 0,53564071 

Meter explosion 9 0,37082818 

Mini frequency 9 0,37082818 

Max frequency 8 0,32962505 

Imbalance 7 0,28842192 

Lack of tension 4 0,16481253 

Cutter knife burn  3 0,12360939 

Voltage drop 3 0,12360939 

Loss of excitement 3 0,12360939 

Total 2427 100 
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Concerning the modeling, the confusion matrices are well seen through the figures ranging from 7 to 12. Figure 7 
represents the results of K-Nearest Neighbors; 8 that of logistic regression; 9 gives for the Support Vector Machine. In 
Figure 10, it is about Random Forest; 11 presents for Gradient boosting and finally the Figure 12 represents the 
confusion matrix of the modeling by artificial neural networks. Table 4 summarizes the values obtained by class and by 
algorithms. 

  

Figure 7 Confusion matrix of K-Nearest Neighbors Figure 8 Confusion matrix of Logistic Regression  

  

Figure 9 Confusion matrix of Support Vector Machine Figure 10 Confusion matrix of Random Forest 

  

Figure 11 Confusion matrix of Gradient Boosting Figure 12 Confusion matrix of Réseaux de Neurone 
Artificiels 
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Table 4 Cumulative values of the confusion matrix by class and by algorithm 

Modeling Algorithms 
Cumulative values by class 

False Positive False Negative True Negative True Positive 

K-Nearest Neighbors (KNN) 10 17 5 465 

Logistic Regression  3 1 12 451 

Support Vector Machine 15 0 0 482 

Random Forest 2 0 13 482 

Gradient Boosting Classifier 2 0 13 482 

Artificial Neural Network (ANN) 15 0 0 482 

Regarding the ROC curves, the graphs in Figure 13 show the performances. In Table 5, we find the numerical results of 
the Scores and the diagrams in Figure 14 give the graphical evaluation of the performances by explored model. 

 

Figure 13 Graphical view of the ROC Curve of the explored Models 

Table 5 Results of the evaluation criteria and the ROC curve of the models by algorithm 

Modeling Algorithms 
Results of the Model Evaluation Criteria ROC 

AUC Accuracy F1 Score Precision Recall 

Logistic Regression  0.991952 0.991673  0.991667  0.991952 0.9918 

SVM 0.989262 0.988552  0.988916  0.989262 0.6647 

Nearest Neighbors (KNN) 0.955734  0.957072  0.958491  0.955734 0.7612 

Random Forest 0.991946  0.991414  0.992013  0.991946 0.9557 

Gradient Boosting Classifier 0.995973  0.995933  0.995921  0.995973 0.9463 

Artificial Neural Network (ANN) 0.966443  0.949951  0.934012  0.966443 0.8872 
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Figure 14 Bar chart of the different models 

 

Table 6 Cumulative results by distribution of confusion matrix values, ROC curve and performance evaluation metrics 

Algorithms 
Distribution by class Model Evaluation Results ROC 

AUC FP FN TN TP Accuracy F1 Score Precision Recall 

Logistic Regression  3 1 12 451 0.991 0.991 0.991 0.991 0.991 

SVM 15 0 0 482 0.989 0.988 0.988 0.989 0.664 

Nearest Neighbors (KNN) 10 17 5 465 0.955 0.957 0.958 0.955 0.761 

Random Forest 2 0 13 482 0.991 0.991 0.992 0.991 0.955 

Gradient Boosting Classifier 2 0 13 482 0.995 0.995 0.995 0.995 0.946 

Artificial Neural Network (ANN) 15 0 0 482 0.966 0.949 0.934 0.966 0.887 

4. Discussion 

An abnormal increase or decrease in nominal values in an electrical circuit constitutes a fault or disturbance. The main 
objective of protection is to eliminate the fault. Depending on the type of fault, intelligent protection emits a circuit 
breaker trip signal and consequently the powering down of the installation or a signaling signal to inform operators of 
the nature of the fault allowing them to take exact measurements. Intended to prevent equipment from being passed 
through by currents harmful to itself and its environment, protection devices must cut off the circuit under load in such 
circumstances. The implementation of protection of electrical installations requires different equipment, operations 
and actions, with specific functions, which must be perfectly mastered. Their nature depends on: the type of protection 
targeted (protection against overloads, protection against short circuits, etc.) and their capacity to ensure this 
protection, [44, 45]. 

It is important to note that despite the effectiveness of these protection devices, we still encounter all kinds of faults 
that cause power interruptions. As shown in Table 1 of this document for the case of the CEB network. Given that the 
objective of this work is to predict faults in order to take steps to avoid their occurrence, we have carried out a 
characterization in Table 3 and the analysis shows us that there are so far 19 different faults in the network studied that 
cause power interruptions. The predictive modeling of these faults, carried out with some algorithms of supervised 
learning of artificial intelligence allows us to confirm that we can be warned in order to carry out operations and avoid 
interruptions. 

At first glance, if we refer to the scores, all the models present very interesting results. The artificial neural networks 
which gives the lowest is 0.949. Then comes the K-Nearest Neighbors which amounts to 0.957, confirmed by the SVM 
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whose value is 0.988. The remainders (Gradient Boosting, Random Forest and Logistic Regressions) give scores higher 
than 0.99. Indeed, most classifier models do not produce only a binary classification as a result. They generally calculate 
a score to classify cases as positive or negative. The score is generally converted into a percentage. This score does not 
always necessarily imply a true probability, especially for machine learning techniques, but often indicates a ranking of 
cases, rather than a strict probability. Since each case would have a score, it would be appropriate to assign a threshold 
beyond which the model result could be considered positive. By the way, a case is considered standard only when the 
score is greater than 80%. We obtained them for all the models studied. Moreover, if we have two models predicting 
with standard cases or not, we can tabulate a confusion matrix for each model. This being done, the confusion matrices 
obtained through the figures ranging from 7 to 12, allowed us to validate the predictions. 

From our confusion matrices, we can estimate that there were 497 cases during training and distributed across classes. 
Our sensitivity is then 100% and our accuracy seems satisfactory at 93.56% for Nearest Neighbors; 96.78% for logistic 
regression then varying between 80% and 96.98% for the other models. We then deduce that our model predicts that 
all cases will be standard. 

Furthermore, the recall allows us to know the percentage of True Positives predicted by the models. In other words, it 
is the number of predicted True Positives divided by all the positives (True Positive + False Negative). The interest of 
the recall lies in the fact that the higher it is, the more the Machine Learning model maximizes the number of True 
Positives. This observation is also made in the results with 0.966 for Artificial Neural Networks and for SVMs, its value 
is 0.989. The other algorithms give recall values greater than 0.99. It should be noted, however, that when the recall is 
high, it rather means that it will not miss any positives. However, this does not provide any information on its prediction 
quality on negatives. To confront this remark, the ROC curves provide more precision. All the curves are found at the 
upper part of the reference axis y x= . 

The Receiver Operating Characteristic (ROC) curve plots the relationship between the True Positive Rate (TPR) and the 
False Positive Rate (FPR) as the decision threshold varies. The ROC curve can be less useful when training models on 
datasets with high class imbalance, as the majority class can be swamped by minority classes. In reality, the area under 
the curve can be interpreted as the proportion of samples correctly classified. More precisely, it represents the 
probability that the classifier will classify a randomly selected positive sample at a higher rank than a randomly selected 
negative sample. The shape of the curve gives an indication of the relationship between the True Positive Rate and False 
Positive Rate values as a function of the classification threshold or decision boundary. We observe in Figure 13 that all 
the curves approach the upper left corner of the graph. Which leads to True Positive Rate values that tend towards 
100% and False Positive Rate values of 0%. Which corresponds to the best possible model because a random model 
produces a ROC curve along the line y x= from the lower left corner to the upper right corner. A model worse than 

random would have a ROC curve that passes under the line and this is what the case of the model obtained with SVM 
modeling presents. However, it is a very small portion that presents itself this way, revaluing the SVM forecast like the 
other algorithms explored and confirmed by the histograms in Figure 14 which are almost at the same level. It goes 
without saying that the results obtained through this work are satisfactory, thus giving the Electricity Community of 
Benin the opportunity to move on to its implementation for future decisions  

5. Conclusion 

They will allow us to carry out the learning of the failures noted in the network of the Electric Community of Benin 
(CEB). The objective is to predict the failures in order to prevent the faults from creating interruptions in the supply of 
electricity. As materials we have the operating data and the recurrence of the faults in the network from 2008 to 2015. 
As methods, we used algorithms such as SVM, K-Nearest Neighbors, Random Forest, Gradient Boosting, Artificial Neural 
Network and Logistic Regression. The results are subjected to evaluation criteria such as the confusion matrix, the ROC 
curve and the scores (Accuracy, F1 Score, Precision and recall). A characterization of the failures is carried out. 

The results of the characterization show that there are 19 different faults that cause interruptions in the studied 
network. Among these, the most recurrent in descending order are: short circuit, overcurrent and differential. It was 
noted that the cause of the faults caused by the short circuit amounts to 947 out of 2427, corresponding to a frequency 
of 39.019%. There are 889 overcurrent worth 36.629% and 123 out of 2427 which is equivalent to 5.067% for the 
differential that also created the interruption of the current in the network. In contrast to these recurring causes, we 
find: burning of the disconnector knife; voltage drop and loss of excitation; which only appeared 3 times per case out of 
2427, during the study period on the network worth together 0.369%. 
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Concerning the modeling, all the results are very interesting. Only, some are better than others. The most unfavorable 
result obtained through the area under the ROC curve, noted AUC is 0.761 for the K-Nearest Neighbors. Its score 
(Accuracy = 0.955; F1 Score = 0.957; Precision = 0.958 and Recall = 0.955) confirms this observation. The area under 
the ROC curve (AUC), remains even more unfavorable with the modeling by Support Vector Machine (0.664) but its 
score (Accuracy = 0.989; F1 Score = 0.988; Precision = 0.988 and Recall = 0.989) exceeds that of K-Nearest Neighbors. 
Furthermore, for the other models, the AUC exceeds 80% with the logistic regression at the head giving AUC = 0.991 
and (Accuracy = 0.991; F1 Score = 0.991; Precision = 0.991 and Recall = 0.991) as score. Indeed, the ROC (Receiver 
Operating Characteristics) curve [Fawcett (2003)] offers both a graphical vision and a relevant measure of the 
performance of a classifier. It has many advantages over recall and precision measures by class: the performance is 
synthesized by a single measure that does not depend on the class proportions. Recall and precision measures are also 
useful because they precisely characterize the behavior of the classifier on each of the classes. 

The values of True Positives that remain greater than 450 out of 497, for the confusion matrices by classes, confirm 
these results across all the algorithms explored. It is 451 for logistic regression, 465 for K-Nearest Neighbors and 482 
for the rest of the algorithms. Given that the False Positives have gradually become True Negatives without affecting the 
true positives, we can conclude that the models are perfect. This demonstrates the validity of the approaches, thus 
opening the door to forecasts of maintenance activities; while theoretically reducing electricity interruptions in the CEB 
network. 

However, it is necessary to experiment in the future work, the results over the periods recognized that optimizations 
and adjustments are possible to further improve the proposed solution. It is also important to resume the work taking 
into account the new data since the network is expanding at every moment.  
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