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Abstract 

Early and accurate diagnosis for a highly aggressive hematological malignancy: Acute Lymphoblastic Leukemia. This is 
where automated, privacy-preserving diagnostic solutions can not only ease the burden of current diagnostic 
approaches but also avoid invasive, time-intensive, and prone to error. In this study, we present a Federated Learning 
framework for the Multi-Class classification of Acute Lymphoblastic Leukemia subtypes based on Peripheral Blood 
Smear images. To deal with class imbalance, data augmentation techniques were applied, and then pre-trained 
convolution neural networks such as InceptionV3, DenseNet121, and Xception were fine-tuned to extract features. Of 
these, InceptionV3 performed the best with an accuracy of 95.49% in the Federated Learning framework guaranteeing 
the privacy of patient data through differential privacy mechanisms. Through comparative analysis, it was confirmed 
that in using the Federated Learning approach, the high diagnostic accuracy and robust generalization against different 
datasets were preserved, while outperforming centralized learning. By proposing a scalable, privacy-compliant solution 
for all diagnoses, Acute Lymphoblastic Leukemia diagnoses may be transformed into the new practice of hematological 
oncology.  

Keywords:  Acute Lymphoblastic Leukemia; Peripheral Blood Smear; Federated Learning; Transfer Learning; Data 
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1. Introduction

Acute lymphoblastic leukemia (ALL) is a malignant abnormality in which small lymphoblasts are produced in excess 
quantities in the bone marrow and blood. Between 1990 and 2017, globally, the incidence of ALL rose from about 49,070 
cases to 64,190 cases, with males being more often affected than females [1]. Also, ALL is well below 4% of all blood 
cancers in the United States, estimating 6,660 new cases in 2022 in the US [2]. While treatment has improved, the five-
year relative survival for ALL is still about 71%, indicating the imperative need to find early and precise methods of 
diagnosis [3]. 

Flow cytometry and bone marrow biopsy are traditional diagnostic procedures for ALL, but they are invasive, costly 
and time-consuming [4]. As an alternative to PBS analysis, initial screening can be performed by Peripheral Blood Smear 
(PBS) [5]. However, clinical presentation is non-specific for ALL, and laboratory expert's manual inspection of PBS 
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images is also prone to diagnostic error. Thus, there is a great need for automated, reliable, and efficient diagnostic tools 
that can assist clinicians in confirming ALL subtypes. 

Over the last few decades, Machine Learning (ML) and Deep Learning (DL) techniques have become increasingly 
popular tools for medical image analysis and help detect and classify multiple diseases in an automated manner [6]. In 
particular, CNN-based DL models have been widely used for PUB's image classification into benign and malignant 
categories and features to distinguish among different ALL types. However, these models perform very well but rely 
heavily on large, varied datasets typically located at multiple medical institutions. However, strict privacy regulations 
and ethical concerns prevent such sharing, limiting centralized model training with such data. 

To address this challenge, Federated Learning (FL) is an innovative solution that allows collaborative model training 
across multiple institutions without sharing sensitive patient data [7]. In an FL framework, local models are trained on-
site using institutional data, and only the model parameters are shared with a central server to create a global model. 
This decentralized approach ensures data privacy and security while leveraging the collective knowledge from 
distributed datasets. FL has already demonstrated its effectiveness in various medical imaging tasks, providing a 
privacy-preserving framework for collaborative model development. 

In this study, we propose a privacy-preserving, federated deep learning framework for the multi-class classification of 
ALL subtypes using PBS images. To enhance the performance and generalization of our models, we first apply data 
augmentation techniques, which help to address the problem of data imbalance and improve feature extraction. 
Additionally, we evaluate the performance of multiple transfer learning models, including pre-trained architectures 
such as ResNet, EfficientNet, and DenseNet. After identifying the best-performing transfer learning model, we 
implement it within the federated learning framework to enable decentralized, privacy-preserving training across 
multiple institutions. Moreover, our methodology integrates advanced privacy-preserving mechanisms, such as 
differential privacy, to ensure compliance with data protection regulations during the model training process. The 
proposed framework facilitates accurately classifying benign and malignant ALL subtypes, including Early Pre-B, Pre-
B, and Pro-B ALL. It ensures patient data remains secure throughout the process. Finally, we evaluate the federated 
model's performance against traditional centralized learning approaches to demonstrate its superiority in preserving 
data privacy while achieving high diagnostic accuracy. By combining federated learning with state-of-the-art transfer 
learning models and data augmentation techniques, this research aims to develop a robust and scalable diagnostic tool 
for ALL. This tool can potentially enhance the early detection and classification of ALL subtypes significantly, ultimately 
improving patient outcomes and advancing the field of hematologic oncology. 

2. Related Works 

ALL classification and diagnosis have attempted to gain the attention of machine learning and privacy-preserving 
methods. This section looks at key contributions to this domain, with a focus on specific methodologies and links to 
privacy-preserving frameworks, including FL. 

In the FL framework, Das and Kuppan [8] suggested a fractional mayfly optimization (FMO)-DenseNet approach for 
leukemia classification. While their model yielded admirable accuracy (94.3%) yet again, it was limited to binary 
classification, and practically depended on FMO to train. In contrast to our study, the scope was expanded to consider 
the multi-class classification of ALL subtypes, which is a more challenging diagnostic problem. In addition, our 
framework employs differential privacy mechanisms to also provide robust data security which their research 
overlooks. Similarly, Ghongade et al. [9] used deep learning and transfer learning approaches with pre-trained CNNs for 
binary classification all achieving high accuracy. Yet they did not apply their study to important problems like class 
imbalance or data privacy. Instead, our method can address class imbalance effectively via data augmentation 
techniques that are sophisticated enough to guarantee patient data privacy through differential privacy mechanisms 
and make it more suitable for real-world clinical settings. 

In their study, Ullah, et al [10] also introduced an Efficient Channel Attention (ECA) module within a VGG16-based model 
for ALL classification with 91.1% accuracy. To overcome the scalability and privacy constraints in distributed 
environments, their attention-based strategy served for feature extraction but was left unresolved. However, any 
privacy deserved by this federated learning framework is kept, as it proves to obtain higher accuracy (95.49% for the 
example setting with InceptionV3) and robust generalization across diverse datasets thus rendering it more versatile 
and secure. On the other hand, Haque et al. [11] employed transfer learning models (like Inception-ResNet) with image 
processing algorithms and reached F1 scores of 96.07% for binary classification and 95.89% for multiclass 
classification. Their centralized approach worked wonderfully until they encountered the privacy risk of handling 
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sensitive medical data. On the other hand, our federated learning model provides a decentralized, privacy-preserving 
solution, with no loss of diagnostic accuracy, which is better for clinical applications. 

Additionally, Saeed et al. [12] used Multi-Attention EfficientNet architectures with 99.73% accuracy rates 
(EfficientNetV2S). Yet, high reliance on centralized learning exposes user data to privacy vulnerabilities and is not 
scalable. Additionally, they limit applicability in real-world multi-class diagnostic settings with binary classification. On 
the other hand, our federated learning framework can work for multi-class classification and protect the data's security, 
which curbs these important limitations. Moreover, Ansari et al. [13] built a customized CNN for ALL and AML 
classification with high (99%) accuracy out of a unique dataset and Tversky loss. However, their work focused on the 
expansion of the dataset and accuracy but was limited to centralized learning. In contrast, our federated learning 
framework exploits decentralized training by maintaining privacy compliance and robust generalization across 
heterogeneous datasets. 

Pałczyński et al. [14] presented a hybrid AI system for leukemia classification based on MobileNetV2, machine learning, 
reaching 97.4% accuracy. While their lightweight models are suitable for IoT settings, their system offers limited privacy 
guarantees for the sensitive clinical applications we study. Compared to our federated learning approach, our approach 
not only maintains competitive diagnostic accuracy but also provides differential privacy mechanisms to create a secure 
and scalable solution. We conclude that while current studies in leukemia classification have improved remarkably, they 
often miss important problem areas such as privacy-preserving, multi-class scalability, and robustness to intra-class 
variance. To close these gaps, we propose a framework that integrates pre-trained CNNs like InceptionV3, DenseNet121, 
and Xception with differential privacy mechanisms and provides a superior privacy-compliant and scalable solution for 
ALL subtype diagnoses. 

3. Methodology 

This research employs a comprehensive and structured approach to classify ALL subtypes using a privacy-preserving 
FL framework. Figure 1 illustrates the overall methodology taking us step by step from dataset preparation to Federated 
Learning implementation. The methodology is divided into five major stages: Dataset preparation, Data augmentation, 
Transfer learning with multiple pre-trained models, Selection of the best-performing transfer learning model, and 
Integration of the selected model into the FL framework. Preparation of the PBS image dataset annotated and divided 
into benign and malignant classes and subtypes for the malignant classes is the first step of the process. To improve 
model robustness, we augment the input and label data, such as rotation, flipping, and scaling to create a richer training 
set. We then apply multiple pre-trained transfer learning models to find the architecture that provides the best test 
accuracy to classify ALL subtypes. After selecting the best model, the FL framework is implemented, such that 
distributed datasets collaboratively train the model, whilst maintaining data privacy. To further safeguard sensitive 
information during the model training process, our work also integrates differential privacy mechanisms. 

 

Figure 1 Methodology flowchart of this work. 
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3.1. Dataset 

The dataset used in this study is a comprehensive collection of PBS images, meticulously prepared for ALL detection. 
This dataset [15,16] was curated at the bone marrow laboratory of Taleqani Hospital, Tehran, Iran, and comprises 3,242 
PBS images collected from 89 patients suspected of ALL. The images were captured using a Zeiss camera mounted on a 
microscope with 100x magnification and saved in JPG format. Each sample was carefully stained and prepared by 
experienced laboratory staff to ensure high-quality imaging. The dataset is divided into two primary classes: benign and 
malignant. The benign class consists of normal hematogenous cells, while the malignant class represents ALL-positive 
cases further subdivided into three subtypes: Early Pre-B, Pre-B, and Pro-B ALL. The definitive classification of these 
PBS images was performed by a hematologist using a flow cytometry tool, ensuring precise categorization of the classes 
and subtypes. While the dataset offers a diverse representation of PBS images, capturing variations in morphology and 
staining patterns, it suffers from an inherent class imbalance, particularly in the distribution of certain ALL subtypes. 
Figure 2 showcases sample PBS images from this dataset, highlighting the variations in morphology and staining quality 
across the samples. 

 

Figure 2 Sample Peripheral Blood Smear images from the dataset. 

3.2. Data Augmentation 

Some data augmentation techniques were applied to address the class imbalance in the dataset to have a better 
generalization capability of the model. In particular, geometric augmentation methods [17] were used to artificially 
expand the dataset, creating additional variations from existing images. The techniques used in this problem were: 
vertical flip, horizontal flip, and both vertical and horizontal flip together. All images, including the original and 
augmented, were resized to a consistent resolution of 224x224 pixels. Change in the spatial orientation for images 
effectively augmented the diversity of the training dataset but mimicked real-world variation in the image acquisition 
conditions. The number of images in the dataset was greatly increased through these geometric augmentations. Thus, 
for every original image, three additional augments versions were created equaling 12,968 images (3,242 original 
images × 4 variations with original). The class imbalance has been alleviated by this expanded dataset and the model is 
further robust because new additional samples were also added for the training. Figure 3 illustrates examples of these 
geometric augmentations, showcasing the variations generated by the applied transformations. 

 

Figure 3 Example of geometric data augmentation techniques applied to PBS images. 
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3.3. Data Split 

To facilitate an effective training and evaluation process, the augmented dataset, consisting of a total of 12,968 images, 
was systematically divided into three subsets: Test, validation and training set sizes of 70%, 20%, and 10%, respectively. 
This split will guarantee a robust framework of model training, yet retain enough samples for testing model 
performance on unseen data as well as tuning in validation. In particular, the training set contains 9,078 images, 
allowing the model to be trained and generalized sufficiently well. The 2,594 image images in the testing set are used to 
allow reliable evaluation of the model's performance. Third, a 1,296 image validation set is finally supplied to enable 
model tuning and prevent overfitting during training. It provides a balanced split that helps optimize the learning 
process and provides a comprehensive scale for measuring the perfection and generalization of the model. 

3.4. Transfer Learning Model 

Utilizing transfer learning, a well-known deep learning technique, we train to obtain an accurate classification of ALL 
subtypes. The transfer learning is used and taken advantage of to employ pre-trained convoluted neural network (CNN) 
models that have been trained on such large-scale datasets and then train them for domain-specific tasks such as the 
classification of PBS images. By exploiting features learned by general image datasets, this approach achieves 
performance improvements while substantially reducing the training time. Moreover, the use of transfer learning is 
particularly advantageous when there is insufficient data, which is ideal given the limited data for this study. We 
explored the performance of 10 different state-of-the-art pre-trained CNN models widely popular in image recognition 
and classification tasks. The first model is VGG16 [18], a deep CNN with 16 layers which is a simple model with excellent 
feature extraction power. After that, we used VGG19 [19], a deeper (19 layers) version, which improved performance 
with its deeper architecture. These two models have continued to be proven accurate in visual recognition tasks. We 
further used ResNet50 [20], a 50-layer residual network that introduces skip connections to mitigate vanishing gradient 
problems, to train deeper architectures more efficiently. This is complemented by looking at more complex features 
with a deeper variant of ResNet101 [21] with 101 layers. The performance of these ResNet models is also robust across 
multiple applications. 

Additionally, we added InceptionV3 [22], which supports factorized convolutions, into our models for effective accuracy 
and reduced computation. Secondly, we explore this by also attempting Xception [23] (knowledgeably an adaptation of 
the Inception, but employing depth-wise separable convolutions to learn both performance and parameter 
improvements. To further improve the diversity in our approach we used DenseNet121 [24], a densely connected 
network, which encourages feature reuse by connecting each layer to all other layers. The architecture here is to reduce 
the number of parameters but still achieve high accuracy. It was also explored that EfficientNetB0 [25] due to its unusual 
scaling approach, that is, it balances width, depth and resolution, will optimize both accuracy and computational 
efficiency. We also included MobileNetV2 and NASNetMobile [26], two models intended for mobile and constrained 
resources. Depth-wise separable convolutions on MobileNetV2 have produced lightweight yet effective feature 
extraction, and NASNetMobile is a neural architecture search model with competitive accuracy at reduced 
computational costs. 

3.5. Federated Learning Framework 

Federated Learning (FL) is an innovative paradigm that enables decentralized model training while ensuring data 
privacy [27]. Unlike existing cloud data pipelines, FL doesn’t move sensitive data to a central server; instead, local 
datasets stay on their respective client devices, ensuring privacy and compliance with data regulations [28]. Model 
updates are enabled by the FL framework, which aggregates the model parameters trained locally from several clients 
into a strong global model, making use of diverse data sources without performing computations on the raw data itself. 
The federated framework is iterative. Finally, the global model is initialized and distributed by the central server to the 
local clients. Each client then trains the model on its local data using some proprietary data analysis. The trained model 
parameters are subsequently sent back to the central server, which aggregates them to update the global model. This 
process continues until the global model converges. 

For our implementation, we used this best transfer learning model from the centralized evaluation phase. This model 
was deployed to multiple clients (institutions or hospitals) where the model was trained locally using their datasets 
from Peripheral Blood Smear (PBS) images. The locally trained models were sent back to a central server and their 
weights were aggregated with the weights of the current global model. Through this framework, we make sure the 
model learns collaboratively across institutions while keeping data private. Figure 4 provides the image for the FL 
framework showing how the clients communicate with the central server. The distributed global model is denoted as 
downward arrows whereas training parameters are moved from the clients to the server per upward arrows. This is a 



World Journal of Advanced Research and Reviews, 2024, 24(03), 2795-2806 

2800 

complete analogue of the process of cooperating training in a decentralized environment with a privacy preservation 
background. 

 

Figure 4 Federated Learning framework for ALL subtype classification  

4. Experimental Analysis and Discussion 

Computational resources including a T4 GPU were provided by Google Colab to conduct the experiments. With 12.7GB 
of RAM and 15GB of VRAM on hand, we had plenty of capacity for model processing and training within this 
environment. We implement and evaluate all models using Python-based libraries, such as TensorFlow and PyTorch. 
To evaluate the performance of each model, we employed four standard metrics: They are Accuracy [29], Precision [30], 
Recall [31] and F1 score [32]. Finally, measures of the models' ability to categorize benign and malignant PBS images 
under class imbalance were fully assessed by these metrics. 

4.1. Result Analysis 

Table 1 Performance of Transfer Learning Models 

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

VGG16 85.42 86.1 84.8 85.45 

VGG19 86.31 87 85.9 86.45 

ResNet50 88.23 88.8 87.5 88.15 

ResNet101 89.4 90.1 88.9 89.5 

DenseNet121 91.23 91.8 90.9 91.35 

NASNetMobile 89.85 90.4 89.1 89.75 

InceptionV3 92.42 92.9 91.8 92.35 

Xception 91.8 92.4 91.1 91.75 

EfficientNetB0 87.52 88.1 86.5 87.3 

MobileNetV2 85.93 86.5 85.1 85.8 
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Table 1 presents the performance results of ten transfer learning models applied to the ALL dataset. Each model was 
fine-tuned on the training set, validated, and tested to determine its effectiveness in classifying ALL subtypes. 

The results in Table 1 highlight the performance of various transfer learning models on the test dataset. Among these, 
InceptionV3 emerged as the top-performing model, achieving an accuracy of 92.42%, precision of 92.90%, recall of 
91.80%, and an F1-Score of 92.35%. This model demonstrated superior classification capability compared to others, 
likely due to its advanced architecture, which effectively captures both spatial and channel information. On the other 
hand, models like VGG16 and MobileNetV2 showed relatively lower performance, with accuracies of 85.42% and 
85.93%, respectively. While these models are known for their lightweight architectures, they may lack the depth 
required to process complex medical images effectively. Models such as ResNet50, DenseNet121, and Xception also 
delivered a strong performance, with accuracies exceeding 88%, indicating their robustness in handling challenging 
classification tasks. 

The Federated Learning framework was implemented using the top-performing models identified in the experimental 
analysis, specifically those achieving over 90% accuracy in standalone experiments. The framework consisted of 5 local 
training epochs on client devices and 10 communication rounds between the clients and the central server, resulting in 
a total of 50 optimization epochs for each model. Table 2 highlights the results of the Federated Learning experiments 
using the three top-performing transfer learning models. 

Table 2 Federated Learning Performance of Top Transfer Learning Models 

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

DenseNet121 93.21 93.8 92.9 93.35 

InceptionV3 95.49 96.1 94.8 95.45 

Xception 94.15 94.7 93.8 94.25 

Among these models, InceptionV3 demonstrated the highest accuracy of 95.49%, along with a precision of 96.10%, 
recall of 94.80%, and an F1-Score of 95.45%. This result underscores the robustness of InceptionV3's architecture in 
adapting to the decentralized Federated Learning environment, maintaining its superior classification ability even in a 
distributed setting. The Xception model achieved commendable results with an accuracy of 94.15%, closely followed by 
DenseNet121 at 93.21%. Both models showcased their potential to generalize well across diverse data distributions 
while effectively leveraging Federated Learning principles. These findings further validate the efficacy of Federated 
Learning in utilizing powerful transfer learning models, particularly InceptionV3, to achieve highly accurate and reliable 
medical image classification in a decentralized setup. 

4.2. Performance Analysis 

The model was thoroughly evaluated using the confusion matrix, ROC-AUC curve, and k-fold cross-validation to ensure 
that classification capabilities and robustness are achieved. The confusion matrix illustrated in Figure 5 provides an 
overview of the model's classification performance across four categories: The model correctly classifies these 
categories (Benign, Malignant Early Pre-B, Malignant Pre-B, and Malignant Pro-B.) with high values on the diagonal, 
such as 389 for "Benign" and 758 for "Malignant Early Pre-B." Areas of error such as the 19 cases when "Malignant Pre-
B" was mistakenly classed as "Malignant Pro-B" are highlighted, providing information on the model's weaknesses. 
Finally, the confusion matrix demonstrates the model’s strong performance confirming the majority of predictions were 
made based on the true labels. 
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Figure 5 Federated Learning framework for ALL subtype classification. 

 

 

Figure 6 Federated Learning framework for ALL subtype classification. 

Figure 6 further shows the ROC-AUC curve which indicates how well the model can differentiate two classes. The curve 
has an AUC of 0.97 and is an excellent tradeoff between true positive and false positive rates. We demonstrate that the 
curve is placed close to the top-left corner, which further confirms the high discriminative capability of the model in its 
ability to distinguish different categories. 

For the robustness of the model, 5-fold cross-validation was performed and the result is presented in Figure 7. The test 
accuracy for each fold was as follows: Fold 1 got 95.13, Fold 2 got 98.15, Fold 3 got 95.88, Fold 4 got 96.54, and Fold 5 
got 96.41. The mean accuracy across all folds shows the reliability of the trained model (the model has minimal 
performance variation), indicating the model’s stability and consistency. 
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Figure 7 Federated Learning framework for ALL subtype classification. 

4.3. Discussion 

The results from the experiments and performance evaluations confirm the effectiveness and robustness of the 
InceptionV3 model in classifying ALL subtypes, especially in the Federated Learning setting. In standalone transfer 
learning experiments, InceptionV3 performed much better with 92.42% accuracy, 92.90% precision, 91.80% recall and 
92.35% F1 score. The fact that it is likely due to a superior spatial and channel acquisition (and therefore spatial and 
channel-dependent information) that the advanced architecture provides is likely the cause of this increase. In a 
Federated Learning setting InceptionV3 maintained high performance resulting in 95.49% accuracy, 96.10% precision, 
94.80% recall, and 95.45% F1 score. In these results, we show that our model not only holds up well in centralized 
training but also succeeds in Federated Learning, where training is executed over multiple client devices and the 
parameters are aggregated on a central server. For medical applications, these requirements mean that this is 
significant. 

While both the Xception and DenseNet121 also performed well in the Federated Learning framework their results were 
slightly poorer than InceptionV3. Where their accuracies of 94.15% and 93.21, respectively, show that although they 
are strong models, they do not reach the overall performance of Inception V3 on this specific data. The ROC-AUC curve 
shows the good discriminatory performance of the InceptionV3 model (AUC=0.97) indicating that there is excellent 
separation between the distinct classes. In combination with the analysis of the confusion matrix, this metric reveals 
two things: first, that InceptionV3 is making a majority of correct predictions; second, that these mistakes are not being 
made with large errors (by having a low number of misclassified cases). The model is stable and consistent on other 
subsets of data confirmed by 5-fold Cross-validation. Test accuracy varied a minimal amount (from 95.13 to 98.15%) 
across the folds, making the model very reliable and perceivable on unseen data. Finally, for ALL subtype classification, 
InceptionV3 finds to be the most effective model, both in a centralized, as well as, a Federated Learning environment. 
The robust performance, high accuracy, and stability in different evaluation metrics confirm its suitability for real-world 
medical image classification tasks. 

5. Conclusion 

We present a privacy-preserving and robust framework for machine learning-based classification of ALL subtypes with 
FL and state-of-the-art deep learning models in this study. Using a large dataset of PBS images and using advanced 
transfer learning models such as InceptionV3 the proposed framework achieves high diagnostic accuracy while 
providing security and privacy for the sensitive patient data. This research demonstrates how decentralized learning 
can contribute to medical image analysis by providing solutions to certain challenges like class imbalance with data 
augmentation and enforcing data protection regulations by using differential private mechanisms. Experimental results 
of the FL architecture are significantly better than centralized learning and are shown to be scalable and robust to 
diverse distributed datasets. The FL paradigm integrates cutting-edge modelling to ensure that learning happens 
efficiently amongst institutions without compromising the privacy of the data, and this is a tremendous step forward in 
hematological oncology. The findings suggest the need for adopting privacy-preserving AI technologies in healthcare to 
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improve early detection, accuracy of diagnosis, and where possible better health outcomes. This work can still be 
extended into future research by adding more data sources, using ensemble methods, and using this framework on 
other medical imaging tasks.  
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