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Abstract 

Random forest is used to predict the possibility of the existence of a cerebrovascular disease subjects curated from the 
BraVa and diabetes datasets. Towards analyzing and prediction of cerebrovascular diseases, SPSS for realizing the 
independence and correlation between the various metrics that could contribute to a subject been diagnosed with a 
cerebrovascular disease. An analysis of the various metrics of the overall vascular size revealed a significant correlation 
especially between Total Length and Total Number of Branches (R = 0.829, p = 0.000). Metrics like Age, Contraction, 
Tortuosity, mean bifurcation Angle, mean bifurcation tilt which has implication of a cerebrovascular disease diagnosis 
according to study was used as the input for the random forest algorithm. The BraVa dataset which is the main datasets 
for this work was used to train the algorithm and a prediction of either “risky” or “Not risky” with a high accuracy of 
100% was recorded. To further test the algorithm, a second datasets from the from the diabetes database which has a 
high number of subjects was also used to test the algorithm and a high accuracy of 90.256% was recorded. It was 
determined from the results that machine learning based Random Forest algorithm can be adopted as a prediction 
method especially on bigger dataset of neuromorphological measurements of neurons and it will aid or facilitate 
accurate prediction of any form of cerebrovascular disease and also aid in accurate medical diagnosis. 
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1 Introduction 

Cerebrovascular diseases (CVD) are the leading cause of death in humans worldwide, crippling morbidity and long-term 
disability. Variations in the neurovascular structure–function relationship between individuals and groups have not yet 
been fully investigated. Quantitative characterization of cerebrovascular architecture from modern magnetic resonance 
angiography (MRA) may lead to a better understanding of the cerebrovascular system's physiological role and 
pathological dysfunction. MRA is a non-invasive procedure for the visualization of cerebral arteries in three dimensions. 
The distinction between fast-moving arterial blood and stagnant tissues that surround the artery is based on this. To 
date, most MRA studies have been limited to qualitative or semi-quantitative evaluations, partial morphometric 
analyzes small numbers of subjects, and proprietary datasets (1). Reconstruction of vascular arborization into an 
explicit 3D representation will achieve a more detailed structural characterization of the cerebral arterial tree (2, 3). In 
addition to allowing comprehensive morphometric research, these reconstructions can be used with fluid dynamics 
modeling for subject-specific assessment of the individual risks of vascular malformation (4, 5). Such methods include 
specification of correct boundary conditions and constraints relevant to geometry of arterial branches and 
characteristics of bifurcation (6). The complexity of manually reconstructing a broad vascular network, however, 
limited numerical simulations to synthetic arterial tree models (7). 
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Human brains change with aging. Changes include progressive shrinkage of gray matter volume (8), changes in white 
matter such as fractional anisotropy (9) and the loss of myelinated axons (10). These changes could be caused by 
changes in the brain vasculature, such as plaque formation and microhemorrhage, microvascular disease (11) and age-
related decline in capillary number (12).  

For decades, Random Forest method is applied in various fields.  Random forest (RF) is an extension of the bagging 
method a learning system typical of the ensemble (13). The method typically picks a sample at random and places it 
into the sample collection, and the sample is then put back into the original data collection, so that the sample can still 
be picked at the next sampling time. In this way we get a sample collection of m samples after m random sampling 
operations. Some samples appear several times in the resampling collection as part of the initial training package, and 
some never appear. T samples containing m samples of training are chosen, a basic learner is then trained based on each 
sample collection, and these basic learners are then combined. RF's base learner is a decision tree, and random selection 
of attributes are incorporated into the decision tree training process.  

RF is simple, comprehensible, computationally inexpensive, and has achieved powerful output in many real-world tasks. 
Montesinos et al (14), reported on the application of RF for genomic prediction using data from plant breeding. In a 
similar study, Osval et al (15) reported on a comparative study of conventional random forest and an improved model 
(zero altered poison random forest) for gene prediction. Pazhanikumar and KuzhalVoiMozhi also adopted the RF model 
to classify remotely sensed images utilizing three datasets; SAT-4, SAT-6 and RSI-CB (16). In the study, images are 
categorized using a majority voting procedure on a tree-based structure using a modified Random Forest (RF) with an 
empirical loss function. Loss values are calculated to assess the model's effectiveness.  

In this work, a statistical approach is firstly used to determine by pairwise correlations with Pearson’s coefficient, with 
the p values indicating the probability of independent distributions. The correlation between age and some metrics of 
the vasculature which could contribute to cerebrovascular disorders was realized. Further, a demonstration of how the 
statistical analysis method can be used to study individual and population differences in cerebral vasculature at the 
level of the entire vasculature, specific arteries or single branches. Age-related changes, hemispheric lateralization, and 
gender-related difference in cerebral circulation may all be important risk factors in cerebrovascular disorders (17). 
For instance, increase in tortuosity of right arterial trees during normal aging may have clinical implications (18). 
Secondly a machine learning based random forest decision tree algorithm was further used to prove and predict based 
on these numerical values the effects or likelihood of cerebrovascular disorder. The methodology is used to study and 
predict the effect of the various metrics on brain vasculature in a collection of healthy 44 subjects. These techniques 
could also be used for other studies of vascular morphology and their effect on clinical outcomes 

2 Material and methods  

2.1 Proposed Method 

The methodology employed in this research integrates a series of systematic processes to ensure the development of 
an accurate and reliable model for analysis and prediction. As depicted in Figure 1, the framework encompasses data 
acquisition, preprocessing, feature selection, model training, testing, and evaluation. The implementation of these steps 
provides a structured approach to enhancing the predictive capacity of the Random Forest (RF) algorithm utilized in 
this study. 

2.1.1 Data Loading and Description 

The study utilized two distinct datasets: the Brain Vasculature (BraVa) dataset and the Diabetes Classification dataset. 
These datasets served as the foundation for model training and testing, ensuring a robust evaluation of the proposed 
approach. 

2.1.1.1 Brain Vasculature Dataset 

The BraVa dataset, obtained from http://cng.gmu.edu/brava, contains digitally reconstructed human arterial 
arborizations derived from the circle of Willis. This dataset includes six primary arterial branches: the left and right 
Anterior Cerebral Arteries (ACAs), Middle Cerebral Arteries (MCAs), and Posterior Cerebral Arteries (PCAs). For this 
study, a subset of the dataset comprising 44 healthy adult subjects aged 19–59 years was selected. Individuals with 
conditions such as diabetes, hypertension, head trauma, psychiatric disorders, or other health issues that could 
influence brain vasculature were excluded to maintain dataset integrity. 
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2.1.1.2 Diabetes Classification Dataset 

The second dataset was derived from the Vanderbilt Biostatistics program and accessed through Data.World 
(http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets). This dataset consists of real-world patient data tailored to 
facilitate the classification of diabetes (binary classification: “yes” or “no”) based on demographic and laboratory 
variables. The data underwent preprocessing, where patients with hemoglobin A1c values less than 6.5% were 
excluded, and those with values equal to or greater than 6.5% were labeled as diabetic. Out of 390 records, 60 samples 
were identified as diabetic and included for further analysis. 

Both datasets were converted into CSV file formats for seamless integration into the model development pipeline. 

 

Figure 1 Process diagram showing the various steps involved in the random forest implementation 

2.1.2 Data Preprocessing 

To ensure the datasets were clean, consistent, and suitable for analysis, preprocessing was conducted. This step 
involved handling missing data, normalizing features, and transforming variables where necessary. These measures 
were undertaken to eliminate noise, reduce (19) redundancy, and enhance the reliability of the predictive model. 

2.1.3 Feature selection 

Feature selection was performed to identify the most relevant attributes for model training. This process aimed to 
reduce dimensionality, improve computational efficiency, and minimize overfitting. The interdependencies between 
features were evaluated to ensure that only the most significant predictors were included in the modeling phase. (20) 

2.1.4 Model Construction 

The construction of the Random Forest (RF) model is predicted on the assumption that the training set contains samples 
and the total number of variables in the dataset is. A critical aspect of this step involves selecting a subset of input 
variables to determine decisions at each tree node. The subset size (where) is chosen to be significantly smaller than, 
thereby enhancing the diversity and accuracy of the resulting decision trees. 

The training process initiates by selecting samples from the training dataset with replacement, creating multiple 
bootstrap samples. For each node of the decision tree, variables are randomly selected from the total variables. These 
variables are utilized to compute the optimal split point at each node. This iterative process continues until the tree is 
fully grown, ensuring that the decision trees are not pruned. This approach allows RF to generate a diverse ensemble of 
decision trees by leveraging randomization during both sample selection and node splitting. 

Each tree in the ensemble is trained using approximately two-thirds () of the original training data, a process known as 
bagging or bootstrap aggregation. The remaining one-third (1/3) of the data, termed “out-of-bag” (OOB) data, is 
reserved for validating the performance of the individual trees within the ensemble. This technique provides an 
unbiased estimate of the test set error, enabling an accurate assessment of the RF model. 
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Additionally, RF introduces another level of randomization during the splitting of decision nodes. Unlike traditional tree 
algorithms, such as Classification and Regression Trees (CART), which consider all available variables to determine 
splits, RF restricts the search to only randomly selected variables at each split. This ensures that the ensemble comprises 
trees with a high degree of variability, mitigating overfitting and improving generalization.  

The combined effects of bagging and randomized node splitting are fundamental to the RF algorithm’s performance. By 
aggregating predictions from multiple independent trees, RF minimizes variance and improves predictive accuracy. The 
dual sources of randomness bootstrap sampling and variable selection are key attributes that distinguish RF as a robust 
and efficient machine learning model. 

This process is illustrated in Figure 2, which depicts the workflow of the RF model construction, demonstrating how 
multiple decision trees are independently trained and aggregated to produce the final predictive output. 

 

Figure 2 Random Forest algorithm Model design 

2.1.5 Model Training and Testing 

The training process of the Random Forest (RF) model in this study is conducted using the BraVa dataset to enable the 
algorithm to accurately learn the inherent patterns within the data. The training phase involves fitting the RF algorithm 
to the training set, ensuring that it identifies relationships and dependencies within the data effectively. 

One of the key considerations during model training is the selection of parameters that significantly influence the 
model’s performance. These parameters include the number of decision trees in the RF and the splitting criterion used 
to construct each tree. The number of trees chosen for this study ranges from 5 to 80. While there is no fixed rule for 
the optimal number of trees, careful consideration is required to strike a balance between mitigating overfitting and 
underfitting. 

The splitting criterion used in this study is the Gini Index, a measure of impurity that determines the attribute to be used 
for splitting data at each node. The Gini Index is calculated as follows: 
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Where i
P

 is the probability that a tuple in D belongs to class Ci and is estimated by
| C | / | D |iD .The sum is computed 

over m classes. The attribute that reduces the impurity to the maximum level (or has the minimum Gini_ index) is 
selected as the splitting attribute.    
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2.1.6 Data Cross Validation 

To optimize the hyperparameters of the RF model and evaluate its generalization performance, a cross-validation (CV) 
technique is employed. The RF hyperparameters include the number of trees in the ensemble and the subset of features 
considered at each split. Proper tuning of these hyperparameters is critical to avoid overfitting, where the model 
performs exceptionally well on the training set but poorly on unseen data. 

This study adopts the n-Fold Cross-Validation method, which divides the training dataset into subsets, or “folds.” Each 
fold acts as a validation set while the remaining folds are used for training. This process is repeated times, ensuring that 
each subset is used as validation exactly once. For instance, in 5-Fold Cross-Validation, the data is split into five equal 
parts: 

• The first iteration uses four folds for training and the fifth for validation. 
• The second iteration trains on folds one, two, three, and five, while the fourth serves as validation. 
• This process repeats until all folds are used for validation. 

The validation results from all folds are averaged to provide an unbiased estimate of the model’s performance. 

In this study, 5-Fold Cross-Validation is employed to assess the accuracy and robustness of the RF model. By evaluating 
the model across multiple folds, the technique ensures that the results are reliable and generalizable to unseen data. 
This methodology enables the study to estimate the model’s predictive capability effectively, thereby validating its 
overall performance. The cross-validation framework and results are further illustrated in Figure 3. 

In the case of a random forest, the hyperparameters include the number of decision trees in the forest and the number 
of characteristics that each tree considers when dividing a node. Deciding the best hyperparameters in advance is 
usually difficult, and tuning a model is where machine learning turns from a science into trial-and-error based 
engineering. Evaluating the model only on the training set would give rise to one of the most important issues of machine 
learning overfitting. An overfit model can look amazing on the training set but in a real-world application it will be 
useless. Hence the basic technique for optimizing the hyperparameter accounts for overfitting through cross validation. 
Cross-validation (CV) technique is best described by using the most common form, n-Fold CV. There is a split of the 
training in n-Fold CV set up into n number of subsets, called folds. This is then iteratively applied to the model n times, 
each time the fold data are trained on n-1 and tested on the nth fold (called the validation data). For example, the first 
iteration trains on the first four folds in fitting a model with n = 5, and evaluate on the fifth. The second iteration trains 
and tests on the fourth, on the first, second, third and fifth layer. The average of the results on each fold is assessed at 
the very end of the training to arrive at the final validity metrics for the model. 

In this study, the 5-fold cross validation is adapted to estimate the performance of the learned model relative to unseen 
results (Figure 3). This helps in estimating the model's results.  

 

  Total Number of Datasets  

Experiment 1      

      

Experiment 2      

      

Experiment 3      

      

Experiment 4      

      

Experiment 5      

Figure 3 5-Fold Cross Validation. 
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2.1.7 Model Evaluation 

As mentioned above, a smaller number of datasets was used to train the model. Therefore, in order to really evaluate 
the model to see how best its performance is, the bigger dataset which has a large number of features than the training 
dataset was used to test the algorithm. The model looks at the test data point and then learns a little more about the 
relationships between the features and labels. Assuming that there are relationships in the data giving the model more 
data will allow it to better understand how to map a set of features to a label. During model evaluation, the performance 
of the learned model is assessed using such techniques as prediction and accuracy measurement. 

2.1.7.1 Prediction  

Prediction here is performed using the trained random forest algorithm which passes the test features through the rules 
of each randomly created trees. Typically, with this model where 80 random trees were selected, each of the random 
forest will predict different targets (outcomes) for the same test feature. Then by considering each predicted target 
votes will be calculated. Suppose the 80 random decision trees predicts some 3 unique targets x, y, z then the votes of x 
are nothing but out of 80 random decision trees how many trees prediction is x. 

 This is the same for (y and z) if the number of votes of x is higher. Let’s say out of 80 random decision tree 60 trees are 
predicting the target will be x. Then the final random forest returns the x as the predicted target. This concept of voting 
is known as majority voting. At this stage the test data from the original dataset are passed to the learned model so as 
to make prediction from the decision trees. At test time, predictions are made by averaging the predictions of each 
decision tree. This procedure of training each individual learner on different bootstrapped subsets of the data and then 
averaging the predictions is known as bagging, short for bootstrap aggregating. 

2.1.7.2 Accuracy Metric 

Based on the actual and predicted values, a measure of the accuracy is computed by finding percentage of correct 
predictions as against the actual values from the dataset. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑁𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (3) 

Where, True positive (TP), means the test predicts that the patients have CVD, and they have CVD. False positive 
(FP) means the test predicts that the patients do not have CVD, but they do. True negative (TN) implies the test predicts 
that the patients do not have CVD, and they do not have CVD. False negative (FN,) the test predicts that the patients have 
CVD, but they do not. 

3 Results and discussion  

Statistical Analysis of the data were done using IDM Statistical Package for Social Sciences (IBM SPSS v20). Specifically, 
the means and standard deviations were calculated using the Frequencies tool. Correlation coefficient and significant 
differences of the data for the various parameters were determined by the Pearson model. Microsoft Excel was used in 
the plotting of statistical graphs for data result presentation. A Lenovo ThinkPad with processor Intel(R) Core(TM) i7-
5600U CPU @2.60GHz 2.59GHz and RAM of 8.00GB which is a 64-bit operating system was used for this work. 

3.1  Quantitative Anatomy of Cerebral Arteries 

A summary sstatistics for the various scaler parameters that characterize the entire vascular structure with regards to 
overall size, branch features and bifurcation angles and symmetry are computed and displayed in Table 1. Overall size 
variability of the data used in this study was similar to the values reported for other parameters of human body size. 
For instance, the coefficients of variation for total number of branches and total length were approximately between 
0.13 and 0.25, and associated ranges between 68% - 157% of the means of the respective parameters. Analysis of the 
various metrics of the overall vascular size revealed a significant correlation especially between Total Length and Total 
Number of Branches (R = 0.829, p = 0.000). A statistically significant difference also existed between Total Length and 
MBO (R = 0.323, p<0.035), Height (R = 0.354, p<0.02), Depth (R = 0.438, p<0.003) and Tortuosity (R = 1.000, p=0.000). 
MBO also had a significant difference with PA (R = 0.323, p<0.035), BPL (R = -0.308, p<0.045) and Tortuosity (R = 0.323, 
p<0.032). Studies have shown that these parameters are critical in the determination of a person’s risk of getting 
cerebrovascular diseases. 

Aneurysms is highly prevalent at or close to bifurcations, hence making bifurcation an important area for focus in the 
determination of vascular diseases. A substantially lower variability is displayed in the sample means of averages within 
arbors. The coefficient of variation for mean bifurcation amplitude is lower than 0.06 and its values range from 87.4% 
to 113.2%. The angular value (89.9°) for mean local bifurcation amplitude was seen to be approximately 1.5 times 
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greater than the mean bifurcation amplitude value (61.2°). An analysis of the correlation by Pearson model showed an 
insignificant negative correlation between the two parameters.  

Analysis of the data showed a significant correlation which studies have revealed to have significant on the risk of a 
person getting cerebrovascular diseases such as stroke. A negative and significant correlation was found to exist 
between age and contraction (R = -0.424, p = 0.004) as well as age and mean bifurcation tilt (MBT) (R = -0.506, p = 
0.000). The significant correlation between age and the parameters (MBA, MBT and Contraction) gives an indication of 
the risk of a person getting a cardiovascular disease with age. Tzimas et al (21) reported on the increase in the risk of 
CVD with age due to related arterial plaque.  This cause high shear stresses being exerted on vessel walls by blood, 
thereby increasing the risk of stroke. Also, as a function of age, a significant positive correlation was seen between mean 
bifurcation angle (MBA) (R = 0.435, p = 0.003). This means that MBA increases with an increase in age.  

Table 1 Whole Arterial Metric 

Item Metric Overall (N=44) 
µ ± σ (min – max) 

Overall size 

Total Number of Branches (TNB) 211.1 ± 41.0 (144 – 330) 
Total Length (TL) (mm) 7050.4 ± 934.6 (4978.1 – 9171.0) 
Max Branch Order (MBO) 15.5 ± 1.3 (13 – 18) 
Max Path Distance (MPD) (mm) 285.9 ± 20.7 (250.0 – 348.4) 
Max Euclidean Distance (MED) (mm) 109.1 ± 4.8 (97.7 – 118.8) 
Width (mm) 116.5 ± 17.1 (14.1 – 147.2) 
Height (mm) 84.8 ± 3.7 (75.6 – 93.3) 
Depth (mm) 129.6 ± 10.6 (93.3 – 145.7) 

Bifurcation 
Amplitude 

Mean Bifurcation Angle  (MBA) (°) 61.2 ± 3.3 (53.5 – 69.3) 
Mean Local Bifurcation Angle (MLBA) (°) 89.4 ± 3.3 (83.2 – 98.6) 
Mean Bifurcation Tilt (MBT) 103.8 ± 4.4 (92.4 – 113.3) 

Branch 

Partition Asymmetry (PA) 0.5 ± 0.1 (0.4 – 0.6) 
Branch Path Length (BPL) 34.2 ± 3.5 (27.6 – 43.2) 
Mean Fragmentation (MF) 15.4 ± 1.6 (12.3 – 19.5) 
Fractal Dimension (FD) 1.1 ± 0.0 (1.1 – 1.1) 

 
Another feature critical in the determination of cerebrovascular diseases is the branch. The tortuosity of a branch gives 
an indication of the type of cerebrovascular diseases such as stroke, diabetes and hypertension. A positive correlation 
was observed between age and tortuosity, fractal dimension and path length (Figure 1 a&b). In contrast, a negative 
correlation was observed between age and path asymmetry. No statistically significant difference was observed for the 
other parameters except between branch path length and fractal dimension (34.15 ± 3.52 and 1.12 ± 0.01).   
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Figure 4 Scatter plot showing the correlation between age and morphometric features (a) Tortuosity (b)Fractal 
dimension and (c) Path asymmetry 

3.2 Size Differences and Proportional Scaling among Cerebral Arteries 

The scalar morphometric characteristics of singular cerebral arteries is highlighted in Table 2. The analysis of the 
obtained data indicated that values increased in the order of PCA → ACA → MCA. For instance, the total number of 
branches for MCA was twice thrice as much as that of ACA and PCA respectively. However, the width, height and depth 
does not follow the same systematic pattern due to the differences in the orientations of cerebral arteries in relation to 
the brain’s canonical planes. 

Conducting in-depth analysis is critical in the characterizing arterial architecture in individual brains. A significant 
correlation was identified between the left and right sides of the various parameters. For instance, the R and p values of 
for the left and right sides of TL for MCA, ACA and PCA are R = 0.677 and 0.000, 0.485 and 0.003, and 0.729 and 0.00 
respectively. Figure 2a, displays the linear relation existing between the left and right lengths of the MCA, ACA and PCA. 

The composition of arterial length within-subject is examined to determine if compensation is made for cerebral arteries 
with regards to the total length (Figure 2b). A positive significant correlation was observed to exist among the length 
each artery and the total vascular arborization (the R value was 0.861, 0.452, and 0.618 for MCA, ACA and PCA 
respectively. p < 0.007). This result indicates that there is a proportional scaling of arteries in the brain. That is, if a big 
vasculature exists, all the arteries are big.   

The neuronal branching contributes a significant effect of the risk of cerebrovascular disease. The analysis showed a 
negative correlation between Age and Contraction (R=-0.424, p =0.004). It’s been proposed that older ages have high 
tendencies for arterial plaque resulting in a narrow artery diameter. Hence the morphological measurements of these 
metrics were curated ass Age/MBT, Age/Contraction and Age/Tortuosity and then labelled according the mean of the 
various values to distinguish between what the algorithm sees as risky or not risky and then run through the random 
forest algorithm. 

Table 2 Individual Artery Metrics 

Item Matrix Overall (N=44)    µ ± σ (min – max) 

PCA ACA MCA 

Overall 
Size 

TNB 37.9 ± 11.9 (14-64) 50.7 ± 12.2 (16-74) 101.5 ± 19.9 (34-144) 

TL (mm) 1015.1 ± 222.1 (510.6 
– 1481.1) 

1760.1 ± 309.8 
(1262.5 – 2547.2) 

3716.5 ± 510.5 (2289.7– 
4699.4) 

MBO 11.7 ± 3.1 (5 – 10) 12.3 ± 2.0 (9 – 18) 17.5 ± 1.7 (13 – 21) 

MPD 300.6 ± 29.0 (248.1 – 
371.2) 

371.6 ± 30.7 
(304.1 – 438.0) 

448.4 ± 37.6 (381.2 – 
536.6) 

MED 180.9 ± 13.5 (151.0-
201.3) 

191.8 ± 14.3 
(163.0 – 218.6) 

197.8 ± 10.6 (168.9 – 
216.3) 
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Width (mm) 63.1 ± 11.7 (45.6 – 
88.7) 

51.6 ± 7.0 (40.9 – 
72.2) 

77.7 ± 9.6 (67.3 – 127.1) 

Height (mm) 102.1 ± 22.5 (43.4 – 
144.2) 

142.0 ± 21.9 (51.8– 
190.3) 

136.5 ± 14.8 (71.0 – 155.6) 

Depth (mm) 130.3 ± 17.6 (58.6 -
158.1) 

217.8 ± 23.8 
(149.4 -269.1) 

209.6 ± 15.4 (177.9 -236.2) 

Bifurcation 
Amplitude 

MLBA (°) 187.2 ± 21.5 (127.7 – 
226.1) 

181.3 ± 16.1 (140.4 – 
212.6) 

174.0 ± 10.1 (156.7 – 191.5) 

MBA (°) 117.6 ± 18.8 (91.4 -
183.1) 

103.3 ± 14.1 (75.3-
152.4) 

113.7 ± 14.3 (91.4-172.7) 

MB Tilt (°) 233.6 ± 20.2 (183.3 – 
267.4) 

215.6 ± 33.0 (95.9 – 
259.2) 

202.6 ± 12.4 (177.9 – 229.2) 

MB Torque (°) 172.8 ± 24.0 (136.2 – 
227.8) 

164.8 ± 25.4 (95.9 – 
259.2) 

172.9 ± 12.4 (142.4 – 192.0) 

Branch 

PA 1.1 ± 0.2 (0.7 – 1.5) 1.0 ± 0.2 (0.6 – 1.4) 1.0 ± 0.1 (0.7 – 1.3) 

BPL 59.5 ± 11.0 (41.2 – 
89.1) 

74.1 ± 11.2 (49.2 – 
102.6) 

74.3 ± 7.8 (59.8 – 92.7) 

MF 29.2 ± 5.6 (19.6 – 46.5) 35.7 ± 5.4 (24.6 – 
50.0) 

32.2 ± 3.4 (25.8 – 40.1) 

FD 2.2 ± 0.0 (2.1 – 2.3) 2.1 ± 0.3 (0.9 – 2.3) 2.3 ± 0.0 (2.2 – 2.3) 

Contraction 1.4 ± 0.1 (1.3 – 1.7) 1.4 ± 0.1 (1.3 – 1.6) 1.3 ± 0.1 (1.2 – 1.4) 

 

 

Figure 5 Graphical representation of (a) linear relation existing between the left and right lengths of the MCA, 
ACA and PCA; (b)composition of arterial length within-subject 

3.3 Performance of Random Forest on Brava and Diabetes datasets 

Random Forest is the final machine learning method that was used. It also contains a hyper-parameter that can be tuned 
to the data, which is the number of trees to have. The selection of trees is important, as it determines the sample of 
observations to use. Not having enough trees can mean that some observations of a class may not get selected at all in 
the training process. The following values for the number of trees: [5, 15, 25, 40, 65, 80] was used for optimization. 
Having too many trees significantly increases the computation time and power needed. Therefore, a maximum of 65 
trees is selected for optimization.  
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3.3.1 Random forest on Brava dataset 

The performance of each selection of trees, using Age/Contraction, Age/MBT, and Age/Tortuosity datasets curated from 
the BraVa database. Having 80 trees does give the best performance of 100% mean accuracy and predicted 8 out of the 
actual 8 value, 97.5% and predicted 8 out of the actual 8, also 92.5% and 8 prediction out of 8 actuals for the BraVa 
database. In general, the more trees you use the better the results. However, the improvement decreases as the number 
of trees increases. That is,  in Age/Contraction it was realized that from tree 5 to 10, there is a decrease in the accuracy 
and then again  as the tree grew from 25 to 40 the accuracy again increased. From the results, there is an indication that 
the higher number of trees do further improve the performance. 

This explains that the algorithm was able to predict with the highest accuracy of 100% whether or not a particular 
subject is at risk or not of being affected by a cerebrovascular disease. Further explanation of the test or algorithm shows 
that, for Age/contraction, there was 43 total rows and columns. High Age and Low Contraction was labelled “Risky”. 
Then low Age and high contraction labelled “Not Risky”. After running the data, the algorithm was able to predict 
according to the number of trees with a given accuracy as shown above and for all the trees and final prediction was 
accurate compared to the actual. This was done for all the other datasets and the various mean accuracy values were 
recorded below in the table. 

Table 3 Mean accuracy values of the various datasets from the algorithm 

Number of trees Age/Contraction (%) Age/MBT (%) Age/Tortuosity (%) 

5 100 95 90 

15 97.5 95 90 

25 95 97 90 

40 97.5 95 92.5 

65 100 95 92.5 

80 100 97.5 92.5 

3.3.2 Testing Random Forest Algorithm with the Diabetes Dataset  

The table above shows the performance of each selection of trees, using Diabetics datasets. Having 80 trees does give 
the best performance of 90.256% mean accuracy and predicted 8 out of the actual 8 value, 90.0% and predicted 8 out 
of the actual 8, then 90.0% and 8 prediction out of 8 actuals for and the least of 89.487% and predicted 8 out of 8 actuals. 
The results indicate that the higher number of trees do further improve the performance. The algorithm however was 
able to correctly make final prediction of the patient being diabetic or not with a good accuracy of 90.3% at the 65 trees. 
As stated earlier, for optimization purposes tree number 65 was chosen which gives a good prediction and accuracy 
from the dataset above. 

Table 4 Mean accuracy values of the diabetes datasets from the algorithm 

Number of trees Mean Accuracy Values (%) 

5 89.5 

15 89.7 

25 90.0 

40 90.3 

65 90.3 

80 90.0 

There are some differences in the mean accuracy values from the algorithm running both the BraVa dataset and the 
Diabetes dataset. One may ask why? The answer is that the algorithm has been designed to be dynamic to take every 
kind of data once the data has the same format is in a certain value which you want to predict the output. In spite of the 
same number of trees being 80, the accuracy values from the BraVa dataset were a bit higher than those from the 
diabetes database because the Brava dataset which is the primary data contains smaller entities than that of the 
Diabetes data.  
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4 Conclusion  

The aim of this study is to develop an efficient model with improved accuracy to predict cerebrovascular disease and 
diabetes. Datasets relevant to the mentioned conditions were obtained and statistically analyzed using correlation 
coefficient. From the analysis, the correlation of age with contraction, MBT and tortuosity were revealed to significantly 
determine CVD.  Performance evaluation of the proposed model based on the critical features showed a mean accuracy 
value of 100%, 97.5% and 92.5% respectively for Age/Contraction, Age/MBT and Age/Tortuosity at 80 trees. 
Meanwhile, a mean accuracy value of 90.3% for the diabetes dataset was achieved at 65 trees. The high mean accuracy 
values for the two datasets indicates the effectiveness and dynamic nature of the proposed algorithm. 
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